Completing correlation matrices of arbitrary order by differential evolution method of global optimization: A Fortran program
Sudhanshu Mishra ()
MPRA Paper from University Library of Munich, Germany
Abstract:
Correlation matrices have many applications, particularly in marketing and financial economics. The need to forecast demand for a group of products in order to realize savings by properly managing inventories requires the use of correlation matrices. In many cases, due to paucity of data/information or dynamic nature of the problem at hand, it is not possible to obtain a complete correlation matrix. Some elements of the matrix are unknown. Several methods exist that obtain valid complete correlation matrices from incomplete correlation matrices. In view of non-unique solutions admissible to the problem of completing the correlation matrix, some authors have suggested numerical methods that provide ranges to different unknown elements. However, they are limited to very small matrices up to order 4. Our objective in this paper is to suggest a method (and provide a Fortran program) that completes a given incomplete correlation matrix of an arbitrary order. The method proposed here has an advantage over other algorithms due to its ability to present a scenario of valid correlation matrices that might be obtained from a given incomplete matrix of an arbitrary order. The analyst may choose some particular matrices, most suitable to his purpose, from among those output matrices. Further, unlike other methods, it has no restriction on the distribution of holes over the entire matrix, nor the analyst has to interactively feed elements of the matrix sequentially, which might be quite inconvenient for larger matrices. It is flexible and by merely choosing larger population size one might obtain a more exhaustive scenario of valid matrices.
Keywords: Incomplete; complete; correlation matrix; valid; semi-definite; eigenvalues; Differential Evolution; global optimization; computer program; fortran; financial economics; arbitrary order (search for similar items in EconPapers)
JEL-codes: C61 C63 C88 G10 (search for similar items in EconPapers)
Date: 2007-03-05
New Economics Papers: this item is included in nep-cmp and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/2000/1/MPRA_paper_2000.pdf original version (application/pdf)
https://mpra.ub.uni-muenchen.de/31282/1/MPRA_paper_31282.pdf revised version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:2000
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().