Estimating dynamic causal effects with unobserved confounders: a latent class version of the inverse probability weighted estimator
Francesco Bartolucci,
Leonardo Grilli and
Luca Pieroni
MPRA Paper from University Library of Munich, Germany
Abstract:
We consider estimation of the causal effect of a sequential binary treatment (typically corresponding to a policy or a subsidy in the economic context) on a final outcome, when the treatment assignment at a given occasion depends on the sequence of previous assignments as well as on time-varying confounders. In this case, a popular modeling strategy is represented by Marginal Structural Models; within this approach, the causal effect of the treatment is estimated by the Inverse Probability Weighting (IPW) estimator, which is consistent provided that all the confounders are observed (sequential ignorability). To alleviate this serious limitation, we propose a new estimator, called Latent Class Inverse Probability Weighting (LC-IPW), which is based on two steps: first, a finite mixture model is fitted in order to compute latent-class-specific weights; then, these weights are used to fit the Marginal Structural Model of interest. A simulation study shows that the LC-IPW estimator outperforms the IPW estimator for all the considered configurations, even in cases of no unobserved confounding. The proposed approach is applied to the estimation of the causal effect of wage subsidies on employment, using a dataset of Finnish firms observed for eight years. The LC-IPW estimate confirms the existence of a positive effect, but its magnitude is nearly halved with respect to the IPW estimate, pointing out the substantial role of unobserved confounding in this setting.
Keywords: Causal inference; Longitudinal design; Mixture model; Potential outcomes; Sequential treatment (search for similar items in EconPapers)
JEL-codes: C33 C52 H25 (search for similar items in EconPapers)
Date: 2012-10-08
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/43430/1/MPRA_paper_43430.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:43430
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().