Preference-based Cooperation in a Prisoner's Dilemma Game: Whole Population Cooperation without Information Flow across Matches
Hanjoon Jung ()
MPRA Paper from University Library of Munich, Germany
Abstract:
This paper studies the possibility of cooperation based on players' preferences. Consider the following infinitely repeated game, similar to Ghosh and Ray (1996). At each stage, uncountable numbers of players are randomly matched without information about their partners' past actions and play a prisoner's dilemma game. The players have the option to continue their relationship, and they all have the same discount factor. Also, they have two possible types: high ability player (H) or low ability player (L). H can produce better outcomes for its partner as well as for itself than L can. I look for an equilibrium that is robust against both pair-wise deviation and individual deviation and call such equilibrium a social equilibrium. I show that in this setting, long term cooperative behavior can arise in a social equilibrium. H wants to match and play only with another H because an HH match produces better outcomes for H than an HL match. So H would break a match with L to increase the possibility of meeting another H, and thus H would not play any cooperative action with L. L knows this intention of H and realizes that L can only cooperate with another L. Consequently, both HH and LL matches are endowed with a scarcity value. This scarcity value is utilized by players to sustain cooperative relationships. Therefore, in a social equilibrium, whole players can play long term cooperative actions because of their preferences for their partners' types.
Keywords: Folk theorem; Random-matching; Social equilibrium; Type-based payoffs (search for similar items in EconPapers)
JEL-codes: C71 C78 (search for similar items in EconPapers)
Date: 2007
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/4650/1/MPRA_paper_4650.pdf original version (application/pdf)
https://mpra.ub.uni-muenchen.de/6024/1/MPRA_paper_6024.pdf revised version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:4650
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().