GMM Estimation of the Number of Latent Factors
M. Fabricio Perez () and
Seung Ahn ()
MPRA Paper from University Library of Munich, Germany
Abstract:
We propose a generalized method of moment (GMM) estimator of the number of latent factors in linear factor models. The method is appropriate for panels a large (small) number of cross-section observations and a small (large) number of time-series observations. It is robust to heteroskedasticity and time series autocorrelation of the idiosyncratic components. All necessary procedures are similar to three stage least squares, so they are computationally easy to use. In addition, the method can be used to determine what observable variables are correlated with the latent factors without estimating them. Our Monte Carlo experiments show that the proposed estimator has good finite-sample properties. As an application of the method, we estimate the number of factors in the US stock market. Our results indicate that the US stock returns are explained by three factors. One of the three latent factors is not captured by the factors proposed by Chen Roll and Ross 1986 and Fama and French 1996.
Keywords: Factor models; GMM; number of factors; asset pricing (search for similar items in EconPapers)
JEL-codes: C10 C13 C33 G12 (search for similar items in EconPapers)
Date: 2007-09-09
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/4862/1/MPRA_paper_4862.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:4862
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().