Dirichlet Process Hidden Markov Multiple Change-point Model
Stanley Iat-Meng Ko,
Terence Tai Leung Chong and
Pulak Ghosh
MPRA Paper from University Library of Munich, Germany
Abstract:
This paper proposes a new Bayesian multiple change-point model which is based on the hidden Markov approach. The Dirichlet process hidden Markov model does not require the specification of the number of change-points a priori. Hence our model is robust to model specification in contrast to the fully parametric Bayesian model. We propose a general Markov chain Monte Carlo algorithm which only needs to sample the states around change-points. Simulations for a normal mean-shift model with known and unknown variance demonstrate advantages of our approach. Two applications, namely the coal-mining disaster data and the real US GDP growth, are provided. We detect a single change-point for both the disaster data and US GDP growth. All the change-point locations and posterior inferences of the two applications are in line with existing methods.
Keywords: Change-point; Dirichlet process; Hidden Markov model; Markov chain; Monte Carlo; Nonparametric Bayesian. (search for similar items in EconPapers)
JEL-codes: C22 (search for similar items in EconPapers)
Date: 2014-08-07
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/57871/1/MPRA_paper_57871.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:57871
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().