Joint inference on market and estimation risks in dynamic portfolios
Christian Francq and
Jean-Michel Zakoian
MPRA Paper from University Library of Munich, Germany
Abstract:
We study the estimation risk induced by univariate and multivariate methods for evaluating the conditional Value-at-Risk (VaR) of a portfolio of assets. The composition of the portfolio can be time-varying and the individual returns are assumed to follow a general multivariate dynamic model. Under sphericity of the innovations distribution, we introduce in the multivariate framework a concept of VaR parameter, and we establish the asymptotic distribution of its estimator. A multivariate Filtered Historical Simulation method, which does not rely on sphericity, is also studied. We derive asymptotic confidence intervals for the conditional VaR, which allow to quantify simultaneously the market and estimation risks. The particular case of minimal variance and minimal VaR portfolios is considered. Potential usefulness, feasibility and drawbacks of the different approaches are illustrated via Monte-Carlo experiments and an empirical study based on stock returns.
Keywords: Confidence Intervals for VaR; DCC GARCH model, Estimation risk; Filtered Historical Simulation; Optimal Dynamic Portfolio (search for similar items in EconPapers)
JEL-codes: C13 C22 C58 (search for similar items in EconPapers)
Date: 2015-11
New Economics Papers: this item is included in nep-ecm, nep-ore and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/68100/1/MPRA_paper_68100.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:68100
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().