An Alternative Sense of Asymptotic Efficiency
Ulrich Mueller
MPRA Paper from University Library of Munich, Germany
Abstract:
The paper studies the asymptotic efficiency and robustness of hypothesis tests when models of interest are defined in terms of a weak convergence property. The null and local alternatives induce different limiting distributions for a random element, and a test is considered robust if it controls asymptotic size for all data generating processes for which the random element has the null limiting distribution. Under weak regularity conditions, asymptotically robust and efficient tests are then simply given by efficient tests of the limiting problem--that is, with the limiting random element assumed observed--evaluated at sample analogues. These tests typically coincide with suitably robustified versions of optimal tests in canonical parametric versions of the model. This paper thus establishes an alternative and broader sense of asymptotic efficiency for many previously derived tests in econometrics, such as tests for unit roots, parameter stability tests and tests about regression coefficients under weak instruments, and it provides a concrete limit on the potential for more powerful tests in less parametric set-ups.
Keywords: hypothesis tests; optimality; robustness; weak convergence (search for similar items in EconPapers)
JEL-codes: C12 C14 (search for similar items in EconPapers)
Date: 2008-03
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/7741/1/MPRA_paper_7741.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:7741
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().