EconPapers    
Economics at your fingertips  
 

Global Optimization by Particle Swarm Method:A Fortran Program

Sudhanshu Mishra ()

MPRA Paper from University Library of Munich, Germany

Abstract: Programs that work very well in optimizing convex functions very often perform poorly when the problem has multiple local minima or maxima. They are often caught or trapped in the local minima/maxima. Several methods have been developed to escape from being caught in such local optima. The Particle Swarm Method of global optimization is one of such methods. A swarm of birds or insects or a school of fish searches for food, protection, etc. in a very typical manner. If one of the members of the swarm sees a desirable path to go, the rest of the swarm will follow quickly. Every member of the swarm searches for the best in its locality - learns from its own experience. Additionally, each member learns from the others, typically from the best performer among them. Even human beings show a tendency to learn from their own experience, their immediate neighbours and the ideal performers. The Particle Swarm method of optimization mimics this behaviour. Every individual of the swarm is considered as a particle in a multidimensional space that has a position and a velocity. These particles fly through hyperspace and remember the best position that they have seen. Members of a swarm communicate good positions to each other and adjust their own position and velocity based on these good positions. The Particle Swarm method of optimization testifies the success of bounded rationality and decentralized decisionmaking in reaching at the global optima. It has been used successfully to optimize extremely difficult multimodal functions. Here we give a FORTRAN program to find the global optimum by the Repulsive Particle Swarm method. The program has been tested on over 90 benchmark functions of varied dimensions, complexities and difficulty levels.

Keywords: Bounded rationality; Decentralized decision making; Jacobian; Elliptic functions; Gielis super-formula; supershapes; Repulsive Particle Swarm method of Global optimization; nonlinear programming; multiple sub-optimum; global; local optima; fit; data; empirical; estimation; parameters; curve fitting (search for similar items in EconPapers)
JEL-codes: C60 C61 C63 (search for similar items in EconPapers)
Date: 2006-08-02
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/874/1/MPRA_paper_874.pdf original version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:874

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2025-03-19
Handle: RePEc:pra:mprapa:874