Improving Underlying Scenarios for Aggregate Forecasts: A Multi-level Combination Approach
Marcus Cobb
MPRA Paper from University Library of Munich, Germany
Abstract:
Abstract In some situations forecasts for a number of sub-aggregations are required for analysis in addition to the aggregate itself. In this context, practitioners typically rely on bottom-up methods to produce a set of consistent forecasts in order to avoid conflicting messages. However, using this approach exclusively can mean that forecasting accuracy is negatively affected when compared to using other methods. This paper presents a method for increasing overall accuracy by jointly combining the forecasts for an aggregate, any sub-aggregations, and the components from any number of models and measurement approaches. The framework seeks to benefit from the strengths of each of the forecasting approaches by accounting for their reliability in the combination process and exploiting the constraints that the aggregation structure imposes on the set of forecasts as a whole. The results from the empirical application suggest that the method is successful in allowing the strengths of the better-performing approaches to contribute to increasing the performance of the rest.
Keywords: Bottom-up forecasting; Forecast combination; Hierarchical forecasting; Reconciling forecasts (search for similar items in EconPapers)
JEL-codes: C53 E27 E37 (search for similar items in EconPapers)
Date: 2018-08
New Economics Papers: this item is included in nep-ets, nep-for and nep-mac
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/88593/1/MPRA_paper_88593.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:88593
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().