A Bayesian approach for correcting bias of data envelopment analysis estimators
Panagiotis Zervopoulos,
Ali Emrouznejad and
Sokratis Sklavos
MPRA Paper from University Library of Munich, Germany
Abstract:
The validity of data envelopment analysis (DEA) efficiency estimators depends on the robustness of the production frontier to measurement errors, specification errors and the dimension of the input-output space. It has been proven that DEA estimators, within the interval (0, 1], are overestimated when finite samples are used while asymptotically this bias reduces to zero. The non-parametric literature dealing with bias correction of efficiencies solely refers to estimators that do not exceed one. We prove that efficiency estimators, both lower and higher than one, are biased. A Bayesian DEA method is developed to correct bias of efficiency estimators. This is a two-stage procedure of super-efficiency DEA followed by a Bayesian approach relying on consistent efficiency estimators. This method is applicable to ‘small’ and ‘medium’ samples. The new Bayesian DEA method is applied to two data sets of 50 and 100 E.U. banks. The mean square error, root mean square error and mean absolute error of the new method reduce as the sample size increases.
Keywords: Data; envelopment; analysis; Super-efficiency; Bayesian; methods; Statistical; inference; Banking (search for similar items in EconPapers)
JEL-codes: C11 C18 C44 M11 (search for similar items in EconPapers)
Date: 2019-01
New Economics Papers: this item is included in nep-ecm and nep-eff
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/91886/1/MPRA_paper_91886.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:91886
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().