EconPapers    
Economics at your fingertips  
 

Estimation of semiparametric stochastic frontiers under shape constraints with application to pollution generating technologies

Mika Kortelainen

MPRA Paper from University Library of Munich, Germany

Abstract: A number of studies have explored the semi- and nonparametric estimation of stochastic frontier models by using kernel regression or other nonparametric smoothing techniques. In contrast to popular deterministic nonparametric estimators, these approaches do not allow one to impose any shape constraints (or regularity conditions) on the frontier function. On the other hand, as many of the previous techniques are based on the nonparametric estimation of the frontier function, the convergence rate of frontier estimators can be sensitive to the number of inputs, which is generally known as “the curse of dimensionality” problem. This paper proposes a new semiparametric approach for stochastic frontier estimation that avoids the curse of dimensionality and allows one to impose shape constraints on the frontier function. Our approach is based on the singleindex model and applies both single-index estimation techniques and shape-constrained nonparametric least squares. In addition to production frontier and technical efficiency estimation, we show how the technique can be used to estimate pollution generating technologies. The new approach is illustrated by an empirical application to the environmental adjusted performance evaluation of U.S. coal-fired electric power plants.

Keywords: stochastic frontier analysis (SFA); nonparametric least squares; single-index model; sliced inverse regression; monotone rank correlation estimator; environmental efficiency (search for similar items in EconPapers)
JEL-codes: C14 C51 D24 Q52 (search for similar items in EconPapers)
Date: 2008-06-20
New Economics Papers: this item is included in nep-ecm, nep-eff and nep-env
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/9257/1/MPRA_paper_9257.pdf original version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:9257

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2025-03-19
Handle: RePEc:pra:mprapa:9257