Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market
Roman Huptas ()
Additional contact information
Roman Huptas: Cracow University of Economics
Central European Journal of Economic Modelling and Econometrics, 2014, vol. 6, issue 4, 237-273
Abstract:
In recent years, autoregressive conditional duration models (ACD models) introduced by Engle and Russell in 1998 have become very popular in modelling of the durations between selected events of the transaction process (trade durations or price durations) and modelling of financial market microstructure effects. The aim of the paper is to develop Bayesian inference for the ACD models. Different specifications of ACD models will be considered and compared with particular emphasis on the linear ACD model, Box-Cox ACD model, augmented Box-Cox ACD model and augmented (Hentschel) ACD model. The analysis will consider models with the Burr distribution and the generalized Gamma distribution for the innovation term. Bayesian inference will be presented and practically used in estimation of and prediction within ACD models describing trade durations. The MCMC methods including Metropolis-Hastings algorithm are suitably adopted to obtain samples from the posterior densities of interest. The empirical part of the work includes modelling of trade durations of selected equities from the Polish stock market.
Keywords: autoregressive conditional duration model (ACD model); trade durations; financial market microstructure; Bayesian inference (search for similar items in EconPapers)
JEL-codes: C11 C22 C50 C58 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.cejeme.eu/publishedarticles/2014-39-24-635550503633906250-9463.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:psc:journl:v:6:y:2014:i:4:p:237-273
Access Statistics for this article
More articles in Central European Journal of Economic Modelling and Econometrics from Central European Journal of Economic Modelling and Econometrics
Bibliographic data for series maintained by Damian Jelito ().