EconPapers    
Economics at your fingertips  
 

The risk of machine learning

Alberto Abadie and Maximilian Kasy

Working Paper from Harvard University OpenScholar

Abstract: Many applied settings in empirical economics involve simultaneous estimation of a large number of parameters. In particular, applied economists are often interested in estimating the effects of many-valued treatments (like teacher effects or location effects), treatment effects for many groups, and prediction models with many regressors. In these settings, machine learning methods that combine regularized estimation and data-driven choices of regularization parameters are useful to avoid over-fitting. In this article, we analyze the performance of a class of such methods that includes ridge, lasso, and pretest, in contexts that require simultaneous estimation of many parameters. Our analysis aims to provide guidance to applied researchers on (i) the choice between regularized estimators in practice and (ii) data-driven selection of regularization parameters. To address (i), we characterize the risk (mean squared error) of regularized estimators and derive their relative performance as a function of simple features of the data generating process. To address (ii), we show that data-driven choices of regularization parameters, based on Stein's unbiased risk estimate or on cross-validation, yield estimators with risk uniformly close to the risk attained under the optimal (unfeasible) choice of regularization parameters. We use data from recent examples in the empirical economics literature to illustrate the practical applicability of our results.

Date: 2017-01
New Economics Papers: this item is included in nep-ecm
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://scholar.harvard.edu/kasy/node/383316

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:qsh:wpaper:383316

Access Statistics for this paper

More papers in Working Paper from Harvard University OpenScholar Contact information at EDIRC.
Bibliographic data for series maintained by Richard Brandon ( this e-mail address is bad, please contact ).

 
Page updated 2025-03-19
Handle: RePEc:qsh:wpaper:383316