EconPapers    
Economics at your fingertips  
 

Forecasting realized volatility models:the benefits of bagging and nonlinear specifications

Eric Hillebrand () and Marcelo Medeiros ()
Additional contact information
Eric Hillebrand: DEPARTMENT OF ECONOMICS, LOUISIANA STATE UNIVERSITY

No 547, Textos para discussão from Department of Economics PUC-Rio (Brazil)

Abstract: We forecast daily realized volatilities with linear and nonlinear models and evaluate the benefits of bootstrap aggregation (bagging) in producing more precise forecasts. We consider the linear autoregressive (AR) model, the Heterogeneous Autoregressive model (HAR), and a non-linear HAR model based on a neural network specification that allows for logistic transition effects (NNHAR). The models and the bagging schemes are applied to the realized volatility time series of the S&P500 index from 3-Jan-2000 through 30-Dec-2005. Our main findings are: (1) For the HAR model, bagging successfully averages over the randomness of variable selection; however, when the NN model is considered, there is no clear benefit from using bagging; (2) including past returns in the models improves the forecast precision; and (3) the NNHAR model outperforms the linear alternatives.

Pages: 30p
Date: 2007-08
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.econ.puc-rio.br/uploads/adm/trabalhos/files/td547.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:rio:texdis:547

Access Statistics for this paper

More papers in Textos para discussão from Department of Economics PUC-Rio (Brazil) Contact information at EDIRC.
Bibliographic data for series maintained by ().

 
Page updated 2025-03-24
Handle: RePEc:rio:texdis:547