Bayesian identification of structural vector autoregression models
Nikolay Arefiev and
Ramis Khabibullin
Applied Econometrics, 2018, vol. 49, 115-142
Abstract:
We propose a new method of Bayesian identification of a structural vector autoregression based on the Bayesian model averaging. As compared to the literature on Bayesian SVAR averaging, the proposed algorithm can identify not only recursive, but also cyclical models given that some conditions specified in the paper hold. Bayesian model selection is made within the set of distinguishable on data models. We use simulations to assess the performance of the algorithm. We also check sensitivity of the proposed algorithm with respect to true parameter values, number of observations, and with respect to the parameters of prior distribution.
Keywords: SVAR; identification; Bayesian model averaging; Bayesian model selection (search for similar items in EconPapers)
JEL-codes: C11 C32 C52 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://pe.cemi.rssi.ru/pe_2018_49_115-142.pdf Full text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ris:apltrx:0340
Access Statistics for this article
Applied Econometrics is currently edited by Anatoly Peresetsky
More articles in Applied Econometrics from Russian Presidential Academy of National Economy and Public Administration (RANEPA)
Bibliographic data for series maintained by Anatoly Peresetsky (p.ekonometrika@gmail.com).