A big data approach to analyzing market volatility
Kesheng Wu,
E. Wes Bethel,
Ming Gu,
David Leinweber and
Oliver Rübe
Algorithmic Finance, 2013, vol. 2, issue 3-4, 241-267
Abstract:
Understanding the microstructure of the financial market requires the processing of a vast amount of data related to individual trades, and sometimes even multiple levels of quotes. This requires computing resources that are not easily available to financial academics and regulators. Fortunately, data-intensive scientific research has developed a series of tools and techniques for working with a large amount of data. In this work, we demonstrate that these techniques are effective for market data analysis by computing an early warning indicator called Volume-synchronized Probability of Informed trading (VPIN) on a massive set of futures trading records. The test data contains five and a half year’s worth of trading data for about 100 most liquid futures contracts, includes about 3 billion trades, and takes 140GB as text files. By using (1) a more efficient file format for storing the trading records, (2) more effective data structures and algorithms, and (3) parallelizing the computations, we are able to explore 16,000 different parameter combinations for computing VPIN in less than 20 hours on a 32-core IBM DataPlex machine. On average, computing VPIN of one futures contract over 5.5 years takes around 1.5 seconds on one core, which demonstrates that a modest computer is sufficient to monitor a vast number of trading activities in real-time – an ability that could be valuable to regulators. By examining a large number of parameter combinations, we are also able to identify the parameter settings that improves the prediction accuracy from 80% to 93%.
Keywords: - (search for similar items in EconPapers)
JEL-codes: J00 (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (12)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ris:iosalg:0016
Access Statistics for this article
Algorithmic Finance is currently edited by Phil Maymin
More articles in Algorithmic Finance from IOS Press
Bibliographic data for series maintained by Saskia van Wijngaarden ().