Recursive Differencing: Bias Reduction with Regular Kernels
Chan Shen () and
Roger Klein ()
Additional contact information
Chan Shen: University of Texas MD Anderson Cancer Center
Roger Klein: Rutgers University
Departmental Working Papers from Rutgers University, Department of Economics
Abstract:
It is well known that it is important to control the bias in estimating conditional expectations in order to obtain asymptotic normality for quantities of interest (e.g. a finite dimensional parameter vector in semiparametric models or averages of marginal effects in the nonparametric case). For this purposes, higher order kernel methods are often employed in developing the theory. However such methods typically do not perform well at moderate sample sizes. Moreover, and perhaps related to their performance, non-optimal windows are selected with undersmoothing needed to ensure the appropriate bias order. We propose a recursive differencing approach to bias reduction for a nonparametric estimator of a conditional expectation, where the order of the bias depending on the stage of the recursion. It performs much better at moderate sample sizes than regular or higher order kernels while retaining a bias of any desired order and a convergence rate the same as that of higher order kernels. We also propose an approach to implement this estimator under optimal windows, which ensures asymptotic normality in semiparametric multiple index models of arbitrary dimension. This mechanism further contributes to its very good finite sample performance.
Keywords: Bias Reduction; Nonparametric Expectations; Semiparametric Models (search for similar items in EconPapers)
JEL-codes: C14 (search for similar items in EconPapers)
Pages: 39 pages
Date: 2017-02-15
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sas.rutgers.edu/virtual/snde/wp/2017-01.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:rut:rutres:201701
Access Statistics for this paper
More papers in Departmental Working Papers from Rutgers University, Department of Economics Contact information at EDIRC.
Bibliographic data for series maintained by ().