EconPapers    
Economics at your fingertips  
 

PERFORMANCE EVALUATION OF ADVANCED ENERGY STORAGE SYSTEMS: A REVIEW

Gulam Smdani, Muhammad Remanul Islam, Ahmad Naim Ahmad Yahaya and Sairul Izwan Bin Safie

Energy & Environment, 2023, vol. 34, issue 4, 1094-1141

Abstract: Energy systems are progressive and revolutionary for their alternative resources, technical developments, demands, effectiveness and environmental effects. The recently published research's goal is to assess and evaluate the systems that are already in operation and those that will be in the future. Energy can be stored as electrical energy such as supercapacitors (SCs) and superconducting magnetic energy storage (SMES) etc., mechanical energy such as pumped hydro energy storage (PHES), compressed air energy storage (CAES) and flywheel energy storage (FES) etc., chemical energy, electrochemical energy such as batteries and fuel cells etc., and thermal energy. Performance of these energy storage systems (ESSs) have been evaluated in terms of energy density, power density, power ratings, capacitance, discharge-time, energy-efficiency, life-time and cycling-times, and costs. Supercapacitors provide highest power density (>10,0000 W/l), while hydrogen fuel cells provide highest energy density (500-3000Wh/l) among other EESs. Batteries also provide high energy density(200-500Wh/l). The energy efficiency is found highest in SMES system (95-98%), and lowest in TES system (30-50%). Moreover, batteries and supercapacitors have the cycle efficiency above 90%. PHES and CAES seem to be the most cost-effective energy storage systems reviewed in this analysis in terms of $/kWh. In addition, power-based capital cost of supercapacitors is lower (100-300$/kW) compared to energy-based capital cost of supercapacitors (300-2000$/kWh). In comparison with power-based capital costs, the energy-based capital cost of batteries is lower, which is 150-400$/kWh for Lead-acid battery, and

Keywords: energy storage systems; energy density; long duration energy storage; energy storage device; batteries and supercapacitors (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X221074729 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:34:y:2023:i:4:p:1094-1141

DOI: 10.1177/0958305X221074729

Access Statistics for this article

More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:engenv:v:34:y:2023:i:4:p:1094-1141