Short-term power prediction of photovoltaic power station based on long short-term memory-back-propagation
Chi Hua,
Erxi Zhu,
Liang Kuang and
Dechang Pi
International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 10, 1550147719883134
Abstract:
Accurate prediction of the generation capacity of photovoltaic systems is fundamental to ensuring the stability of the grid and to performing scheduling arrangements correctly. In view of the temporal defect and the local minimum problem of back-propagation neural network, a forecasting method of power generation based on long short-term memory-back-propagation is proposed. On this basis, the traditional prediction data set is improved. According to the three traditional methods listed in this article, we propose a fourth method to improve the traditional photovoltaic power station short-term power generation prediction. Compared with the traditional method, the long short-term memory-back-propagation neural network based on the improved data set has a lower prediction error. At the same time, a horizontal comparison with the multiple linear regression and the support vector machine shows that the long short-term memory-back-propagation method has several advantages. Based on the long short-term memory-back-propagation neural network, the short-term forecasting method proposed in this article for generating capacity of photovoltaic power stations will provide a basis for dispatching plan and optimizing operation of power grid.
Keywords: Photovoltaic generators; long short-term memory; artificial neural networks; power forecasting; long short-term memory-back-propagation neural network (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719883134 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:10:p:1550147719883134
DOI: 10.1177/1550147719883134
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().