Design and implementation of state-of-charge estimation based on back-propagation neural network for smart uninterruptible power system
Shuo Li,
Song Li,
Haifeng Zhao and
Yuan An
International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 12, 1550147719894526
Abstract:
In this article, a method for estimating the state of charge of lithium battery based on back-propagation neural network is proposed and implemented for uninterruptible power system. First, back-propagation neural network model is established with voltage, temperature, and charge–discharge current as input parameters, and state of charge of lithium battery as output parameter. Then, the back-propagation neural network is trained by Levenberg–Marquardt algorithm and gradient descent method; and the state of charge of batteries in uninterruptible power system is estimated by the trained back-propagation neural network. Finally, we build a state-of-charge estimation test platform and connect it to host computer by Ethernet. The performance of state-of-charge estimation based on back-propagation neural network is tested by connecting to uninterruptible power system and compared with the ampere-hour counting method and the actual test data. The results show that the state-of-charge estimation based on back-propagation neural network can achieve high accuracy in estimating state of charge of uninterruptible power system and can reduce the error accumulation caused in long-term operation.
Keywords: State of charge; uninterruptible power system; back-propagation neural network (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719894526 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:12:p:1550147719894526
DOI: 10.1177/1550147719894526
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().