A multi-scale fusion prediction method for lithium-ion battery capacity based on ensemble empirical mode decomposition and nonlinear autoregressive neural networks
Pei Wang,
Xue Dan and
Yong Yang
International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 3, 1550147719839637
Abstract:
Lithium-ion battery has been widely used in various fields due to its excellent performance. How to accurately predict its current capacity throughout a battery full lifetime has been a key technology for power system management, assurance, and predictive maintenance. In order to overcome low precision problem in long-term prediction for lithium-ion battery capacity, this article proposes a multi-scale fusion prediction method based on ensemble empirical mode decomposition and nonlinear autoregressive models neural networks. The proposed method uses ensemble empirical mode decomposition to decompose the battery capacity measurement sequence to generate multiple intrinsic mode function components on different scales. Then, each component is predicted by nonlinear autoregressive neural networks; finally, the prediction results of each component are reconstructed to obtain the final battery capacity prediction sequence. Experimental results show that the proposed method has higher prediction accuracy and signal adaptability than single nonlinear autoregressive neural networks.
Keywords: Lithium-ion battery; capacity prediction; ensemble empirical mode decomposition; autoregressive models neural networks (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719839637 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:3:p:1550147719839637
DOI: 10.1177/1550147719839637
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().