Detecting travel modes from smartphone-based travel surveys with continuous hidden Markov models
Guangnian Xiao,
Qin Cheng and
Chunqin Zhang
International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 4, 1550147719844156
Abstract:
In the last decades, studies on travel mode detection from location data have been increasing exponentially. However, these studies have struggled with three limitations: data collection-, feature selection-, and classification approach–related issues. Thus, we propose a novel framework to collect trajectory data and infer travel modes by making a great deal of effort. First, we conduct a travel survey with smartphones in Shanghai City, China. Furthermore, we use a prompted recall survey with surveyor intervention by telephones. In the survey, the surveyor asks respondents to validate the travel information automatically detected from trajectory data. Second, we use well-known sequential forward selection procedures to select the most reasonable combination of features. This set of features is expected to help achieve high classification accuracy with few features. Third, as a machine learning approach incorporating high resistance to noise in features, a continuous hidden Markov model is used to classify segments in dataset 1 that comprises Global Positioning System data alone. Consequently, 94.37% of segments are flagged correctly for the training dataset, while 93.47% are detected properly for the test dataset by making a comparison between detected travel modes and travel modes validated during the prompted recall survey. A higher accuracy (95.28%) is achieved in the test dataset on dataset 2 that consists of Global Positioning System, accelerometer, Global System for Mobile communication, and Wi-Fi data. The promising results obtained with this method provide a new perspective in understanding travel mode detection and other related issues in Global Positioning System travel surveys, including trip purpose detection.
Keywords: Travel mode; travel survey; continuous hidden Markov model; classification; combination of features (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719844156 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:4:p:1550147719844156
DOI: 10.1177/1550147719844156
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().