Research on measurement of supply chain finance credit risk based on Internet of Things
Waseem Ahmed Abbasi,
Zongrun Wang,
Yanju Zhou and
Shahzad Hassan
International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 9, 1550147719874002
Abstract:
This article first expounds the concept of supply chain finance and its credit risk, describes the hierarchical structure of the Internet of Things and its key technologies, and combines the unique functions of the Internet of Things technology and the business process of the inventory pledge financing model to design the supply chain financial model based on the Internet of Things. Then it studies the credit risk assessment under the supply chain financial model based on the Internet of Things, and uses the support vector machine algorithm and Logistic regression method to establish a credit risk measurement model considering the subject rating and debt rating. Finally, an example analysis shows that the credit risk measurement model has a high accuracy rate for determining whether small and medium-sized enterprises in the supply chain financial model based on the Internet of Things are trustworthy. This will facilitate the revision and improvement of the existing credit evaluation system and improve the accuracy of measuring the current financial risk of supply chain. This research adopts the Internet of Things to measure financial credit risk in supply chain and provides a reference for the following researches.
Keywords: Internet of Things; supply chain finance; credit risk measurement; Logistic; SVM (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719874002 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:9:p:1550147719874002
DOI: 10.1177/1550147719874002
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().