EconPapers    
Economics at your fingertips  
 

Design of smart agriculture based on big data and Internet of things

Chunling Li and Ben Niu

International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 5, 1550147720917065

Abstract: With the wide application of Internet of things technology and era of large data in agriculture, smart agricultural design based on Internet of things technology can efficiently realize the function of real-time data communication and information processing and improve the development of smart agriculture. In the process of analyzing and processing a large amount of planting and environmental data, how to extract effective information from these massive agricultural data, that is, how to analyze and mine the needs of these large amounts of data, is a pressing problem to be solved. According to the needs of agricultural owners, this article studies and optimizes the data storage, data processing, and data mining of large data generated in the agricultural production process, and it uses the k-means algorithm based on the maximum distance to study the data mining. The crop growth curve is simulated and compared with improved K-means algorithm and the original k-means algorithm in the experimental analysis. The experimental results show that the improved K-means clustering method has an average reduction of 0.23 s in total time and an average increase of 7.67% in the F metric value. The algorithm in this article can realize the functions of real-time data communication and information processing more efficiently, and has a significant role in promoting agricultural informatization and improving the level of agricultural modernization.

Keywords: Big data; smart agriculture; Internet of things; k-means algorithm; data storage (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720917065 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720917065

DOI: 10.1177/1550147720917065

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720917065