IFed: A novel federated learning framework for local differential privacy in Power Internet of Things
Hui Cao,
Shubo Liu,
Renfang Zhao and
Xingxing Xiong
International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 5, 1550147720919698
Abstract:
Nowadays, wireless sensor network technology is being increasingly popular which is applied to a wide range of Internet of Things. Especially, Power Internet of Things is an important and rapidly growing section in Internet of Thing systems, which benefited from the application of wireless sensor networks to achieve fine-grained information collection. Meanwhile, the privacy risk is gradually exposed, which is the widespread concern for electricity power consumers. Non-intrusive load monitoring, in particular, is a technique to recover state of appliances from only the energy consumption data, which enables adversary inferring the behavior privacy of residents. There can be no doubt that applying local differential privacy to achieve privacy preserving in the local setting is more trustworthy than centralized approach for electricity customers. Although it is hard to control the risk and achieve the trade-off between privacy and utility by traditional local differential privacy obfuscation mechanisms, some existing obfuscation mechanisms based on artificial intelligence, called advanced obfuscation mechanisms, can achieve it. However, the large computing resource consumption to train the machine learning model is not affordable for most Power Internet of Thing terminal. In this article, to solve this problem, IFed was proposed—a novel federated learning framework that let electric provider who normally is adequate in computing resources to help Power Internet of Thing users. First, the optimized framework was proposed in which the trade-off between local differential privacy, data utility, and resource consumption was incorporated. Concurrently, the following problem of privacy preserving on the machine learning model transport between electricity provider and customers was noted and resolved. Last, users were categorized based on different levels of privacy requirements, and stronger privacy guarantee was provided for sensitive users. The formal local differential privacy analysis and the experiments demonstrated that IFed can fulfill the privacy requirements for Power Internet of Thing users.
Keywords: Local differential privacy; differential privacy; federated learning; IoT; Power Internet of Things (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720919698 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720919698
DOI: 10.1177/1550147720919698
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().