EconPapers    
Economics at your fingertips  
 

Identification of cucumber leaf diseases using deep learning and small sample size for agricultural Internet of Things

Jingyao Zhang, Yuan Rao, Chao Man, Zhaohui Jiang and Shaowen Li

International Journal of Distributed Sensor Networks, 2021, vol. 17, issue 4, 15501477211007407

Abstract: Due to the complex environments in real fields, it is challenging to conduct identification modeling and diagnosis of plant leaf diseases by directly utilizing in-situ images from the system of agricultural Internet of things. To overcome this shortcoming, one approach, based on small sample size and deep convolutional neural network, was proposed for conducting the recognition of cucumber leaf diseases under field conditions. One two-stage segmentation method was presented to acquire the lesion images by extracting the disease spots from cucumber leaves. Subsequently, after implementing rotation and translation, the lesion images were fed into the activation reconstruction generative adversarial networks for data augmentation to generate new training samples. Finally, to improve the identification accuracy of cucumber leaf diseases, we proposed dilated and inception convolutional neural network that was trained using the generated training samples. Experimental results showed that the proposed approach achieved the average identification accuracy of 96.11% and 90.67% when implemented on the data sets of lesion and raw field diseased leaf images with three different diseases of anthracnose, downy mildew, and powdery mildew, significantly outperforming those existing counterparts, indicating that it offered good potential of serving field application of agricultural Internet of things.

Keywords: Cucumber; disease identification; small sample size; deep convolutional neural network; generative adversarial networks; agricultural Internet of things (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/15501477211007407 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:17:y:2021:i:4:p:15501477211007407

DOI: 10.1177/15501477211007407

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:17:y:2021:i:4:p:15501477211007407