Bio-inspired cluster–based optimal target identification using multiple unmanned aerial vehicles in smart precision agriculture
Abdu Salam,
Qaisar Javaid and
Masood Ahmad
International Journal of Distributed Sensor Networks, 2021, vol. 17, issue 7, 15501477211034071
Abstract:
Farming is the major profession in several republics for centuries. However, due to the immigration of individuals from rural to urban, there is prevention in farming. The use of modern technology in the precision agriculture field increases productivity and also improves the exports of a country. The productivity may suffer due to different environmental factors, diseases and insects attacks on the crops, especially tomatoes. The target area (i.e. the affected crops area due to environmental factors) identification and delivery of timely information about diseases in the crops to the ground station are mandatory to make the precautionary measurements. In flying sensor networks, the localization and clustering of multiple unmanned aerial vehicles for target areas identification is a challenging task due to energy constraints, communication range, frequent change in topology, link expiration and high mobility. In this article, we proposed the localization and clustering of multiple unmanned aerial vehicles for the identification of affected target areas in the tomato crop field. The localization of unmanned aerial vehicles depends on the weights of environmental factors, that is, relative humidity, soil moisture, temperature, light intensity, NPK (nitrogen (n), phosphorus (p) and potassium (k)) and power of hydrogen (pH). A honey bee optimization approach is used for the localization and formation of multiple unmanned aerial vehicles’ cluster to accurately identify the target areas. The performance of our bio-inspired approach is compared in terms of communication overhead, packet delivery ratio, mean end-to-end delay and energy consumption with the existing swarm intelligence–based schemes and validated via a simulation. The simulation result shows that the bio-inspired approach performs better among the selected approaches.
Keywords: Flying sensor networks; precision agriculture; unmanned aerial vehicles; target identification; clustering; honey bee optimization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/15501477211034071 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:17:y:2021:i:7:p:15501477211034071
DOI: 10.1177/15501477211034071
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().