EconPapers    
Economics at your fingertips  
 

The Sequential Probability Ratio Test and Binary Item Response Models

Steven W. Nydick
Additional contact information
Steven W. Nydick: University of Minnesota

Journal of Educational and Behavioral Statistics, 2014, vol. 39, issue 3, 203-230

Abstract: The sequential probability ratio test (SPRT) is a common method for terminating item response theory (IRT)-based adaptive classification tests. To decide whether a classification test should stop, the SPRT compares a simple log-likelihood ratio, based on the classification bound separating two categories, to prespecified critical values. As has been previously noted (Spray & Reckase, 1994), the SPRT test statistic is not necessarily monotonic with respect to the classification bound when item response functions have nonzero lower asymptotes. Because of nonmonotonicity, several researchers (including Spray & Reckase, 1994) have recommended selecting items at the classification bound rather than the current ability estimate when terminating SPRT-based classification tests. Unfortunately, this well-worn advice is a bit too simplistic. Items yielding optimal evidence for classification depend on the IRT model, item parameters, and location of an examinee with respect to the classification bound. The current study illustrates, in depth, the relationship between the SPRT test statistic and classification evidence in binary IRT models. Unlike earlier studies, we examine the form of the SPRT-based log-likelihood ratio while altering the classification bound and item difficulty. These investigations motivate a novel item selection algorithm based on optimizing the expected SPRT criterion given the current ability estimate. The new expected log-likelihood ratio algorithm results in test lengths noticeably shorter than current, commonly used algorithms, and with no loss in classification accuracy.

Keywords: sequential probability ratio test; item response theory; computerized adaptive testing; computerized classification tests; three-parameter logistic model (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/1076998614524824 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:39:y:2014:i:3:p:203-230

DOI: 10.3102/1076998614524824

Access Statistics for this article

More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:jedbes:v:39:y:2014:i:3:p:203-230