The Research Trends of Text Classification Studies (2000–2020): A Bibliometric Analysis
Haoran Zhu and
Lei Lei
SAGE Open, 2022, vol. 12, issue 2, 21582440221089963
Abstract:
Text Classification (TC) is the process of assigning several different categories to a set of texts. This study aims to evaluate the state of the arts of TC studies. Firstly, TC-related publications indexed in Web of Science were selected as data. In total, 3,121 TC-related publications were published in 760 journals between 2000 and 2020. Then, the bibliographic information was mined to identify the publication trends, important contributors, publication venues, and involved disciplines. Besides, a thematic analysis was performed to extract topics with increasing/decreasing popularity. The findings showed that TC has become a fast-growing interdisciplinary area, and that emerging research powers such as China are playing increasingly important roles in TC research. Moreover, the thematic analysis showed increased interest in topics concerning advanced classification algorithms, performance evaluation methods, and the practical applications of TC. This study will help researchers recognize the recent trends in the area.
Keywords: text classification; bibliometric analysis; research trends; topic extraction; dependency relations (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/21582440221089963 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:sagope:v:12:y:2022:i:2:p:21582440221089963
DOI: 10.1177/21582440221089963
Access Statistics for this article
More articles in SAGE Open
Bibliographic data for series maintained by SAGE Publications ().