An Enhanced IHHO-LSTM Model for Predicting Online Public Opinion Trends in Public Health Emergencies
Guangyu Mu,
Jiaxue Li,
Zehan Liao and
Ziye Yang
SAGE Open, 2024, vol. 14, issue 2, 21582440241257681
Abstract:
Social networks accelerate information communication in public health emergencies. Some negative information may cause an outbreak of public opinion crisis. Accurately predicting online public opinion trends can help the relevant departments take timely and effective measures to cope with risks. Therefore, this research proposes a prediction model incorporating the swarm intelligence optimization algorithm and the deep learning method. In this model, we improve the Harris Hawks Optimization (HHO) algorithm by introducing the Cauchy distribution function, the stochastic contraction exponential function, and the adaptive inertia weight. Then we utilize the improved HHO (IHHO) algorithm to optimize the hyperparameters of the deep learning method LSTM, including the learning rate and the number of neurons in the hidden layer. Finally, we construct the IHHO-LSTM model to make predictions in three public health emergencies. The experiments verify that the proposed model outperforms other single and hybrid models. The MAPE values reduce by 78.34%, 54.46%, and 46.42% relative to the average values of the three single models. Compared with the mean values of the two hybrid models, the MAPE values decrease by 47.69%, 18.45%, and 5.78%. The IHHO-LSTM model can be applied to public opinion early warning and reversal identification, providing a reference in public opinion management.
Keywords: HHO algorithm; deep learning; IHHO-LSTM model; online public opinion; trend prediction; public health emergencies (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/21582440241257681 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:sagope:v:14:y:2024:i:2:p:21582440241257681
DOI: 10.1177/21582440241257681
Access Statistics for this article
More articles in SAGE Open
Bibliographic data for series maintained by SAGE Publications ().