EconPapers    
Economics at your fingertips  
 

Bayesian Sampling Algorithms for the Sample Selection and Two-Part Models

Martijn van Hasselt

No 241, Computing in Economics and Finance 2005 from Society for Computational Economics

Abstract: This paper considers two models to deal with an outcome variable that contains a large fraction of zeros, such as individual expenditures on health care: a sample-selection model and a two-part model. The sample-selection model uses two possibly correlated processes to determine the outcome: a decision process and an outcome process; conditional on a favorable decision, the outcome is observed. The two-part model comprises uncorrelated decision and outcome processes. The paper addresses the issue of selecting between these two models. With a Gaussian specification of the likelihood, the models are nested and inference can focus on the correlation coefficient. Using a fully parametric Bayesian approach, I present sampling algorithms for the model parameters that are based on data augmentation. In addition to the sampler output of the correlation coefficient, a Bayes factor can be computed to distinguish between the models. The paper illustrates the methods and their potential pitfalls using simulated data sets

Keywords: Sample Selection; Data Augmentation; Gibbs Sampling (search for similar items in EconPapers)
JEL-codes: C11 C15 (search for similar items in EconPapers)
Date: 2005-11-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://repec.org/sce2005/up.17210.1107127152.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sce:scecf5:241

Access Statistics for this paper

More papers in Computing in Economics and Finance 2005 from Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().

 
Page updated 2025-03-20
Handle: RePEc:sce:scecf5:241