Learning and the Law of Iterated Projections
Bartholomew Moore () and
Huntley Schaller
Additional contact information
Bartholomew Moore: Fordham University
No 741, Computing in Economics and Finance 1999 from Society for Computational Economics
Abstract:
Equilibrium prices or quantities in very broad classes of models depend on iterated expectations of an autoregressive forcing variable. Examples of this dependence include that of stock prices on autoregressive dividends, that of the price level or exchange rate on an autoregressive money supply, that of consumption on autoregressive income, and that of investment on autoregressive interest rates, output demand, or technology shocks. In this paper, we show that, under learning, these iterated expectations are not a certainty equivalence. Further, we show that the certainty equivalent form of iterated expectations typically used in the literature ignores covariance terms that help explain empirical anomalies in a variety of macroeconomic models. We illustrate the consequences for two examples. In the first, a permanent-income/life-cycle model of consumption, we show that learning about an autoregressive income process can explain the widely observed negative correlation of consumption growth and current income. In the second, a present-value model of an asset price, learning about the autoregressive dividend process can help explain the empirical finding that dividend yields predict excess returns. Since, under learning, the iterated expectations terms are extremely complex, we develop a numerical (Monte Carlo) method for finding a polynomial approximation. A unique feature of our method is that we approximate the agents' subjective expectations. Therefore, in the spirit of individual learning, our method utilizes only information that is available to the agent.
Date: 1999-03-01
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sce:scecf9:741
Access Statistics for this paper
More papers in Computing in Economics and Finance 1999 from Society for Computational Economics CEF99, Boston College, Department of Economics, Chestnut Hill MA 02467 USA. Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().