Prediction of economic value added of Iranian listed companies
Mousavi Shiri Mahmoud,
Salehi Mehdi and
Bahrami Mostafa
Additional contact information
Mousavi Shiri Mahmoud: Payame Noor University
Salehi Mehdi: Ferdowsi University of Mashhad
Bahrami Mostafa: Hidaj Branch, Islamic Azad University
Sovremennaa ekonomika: problemy, tendencii, perspektivy Современная экономика: проблемы, тенденции, перспективы, 2013, issue 9 (2), 45-55
Abstract:
Economic value added (EVA) is an important issue for economic analysts and investors. This article proposes a method for predicting economic value added of the automotive and steel listed companies on the Tehran Stock Exchange (TSE) using neural networks. The data were collected from the audited financial statements during 2006-2011. EVA was predicted using linear regression and neural networks and the results were compared with actual data. The findings suggested that neural networks method outperforms linear regression in predicting EVA.
Keywords: НЕЙРОННЫЕ СЕТИ; ЭКОНОМИЧЕСКАЯ ДОБАВЛЕННАЯ СТОИМОСТЬ; ФИНАНСОВЫЕ КОЭФФИЦИЕНТЫ; ТЕГЕРАНСКАЯ ФОНДОВАЯ БИРЖА; ИРАН (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://cyberleninka.ru/article/n/prediction-of-eco ... ian-listed-companies
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:scn:018798:14507724
Access Statistics for this article
More articles in Sovremennaa ekonomika: problemy, tendencii, perspektivy Современная экономика: проблемы, тенденции, перспективы from CyberLeninka, Муромский институт (филиал) Государственного образовательного учреждения высшего профессионального образования "Владимирский государственный университет им. Александра Григорьевича и Николая Григорьевича Столетовых"
Bibliographic data for series maintained by CyberLeninka ().