Multiple time scales in volatility and leverage correlation: A stochastic volatility model
Josep Perelló (),
Jaume Masoliver and
Jean-Philippe Bouchaud
Additional contact information
Jean-Philippe Bouchaud: Science & Finance, Capital Fund Management
No 50001, Science & Finance (CFM) working paper archive from Science & Finance, Capital Fund Management
Abstract:
Financial time series exhibit two different type of non linear correlations: (i) volatility autocorrelations that have a very long range memory, on the order of years, and (ii) asymmetric return-volatility (or `leverage') correlations that are much shorter ranged. Different stochastic volatility models have been proposed in the past to account for both these correlations. However, in these models, the decay of the correlations is exponential, with a single time scale for both the volatility and the leverage correlations, at variance with observations. We extend the linear Ornstein-Uhlenbeck stochastic volatility model by assuming that the mean reverting level is itself random. We find that the resulting three-dimensional diffusion process can account for different correlation time scales. We show that the results are in good agreement with a century of the Dow Jones index daily returns (1900-2000), with the exception of crash days.
JEL-codes: G10 (search for similar items in EconPapers)
Date: 2003-02
New Economics Papers: this item is included in nep-ets, nep-fin and nep-fmk
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
Working Paper: Multiple time scales in volatility and leverage correlations: An stochastic volatility model (2003) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sfi:sfiwpa:50001
Access Statistics for this paper
More papers in Science & Finance (CFM) working paper archive from Science & Finance, Capital Fund Management 6 boulevard Haussmann, 75009 Paris, FRANCE. Contact information at EDIRC.
Bibliographic data for series maintained by ().