On a multi-timescale statistical feedback model for volatility fluctuations
Lisa Borland and
Jean-Philippe Bouchaud
Additional contact information
Lisa Borland: Evnine-Vaughan Associates, Inc.
Jean-Philippe Bouchaud: Science & Finance, Capital Fund Management
No 500059, Science & Finance (CFM) working paper archive from Science & Finance, Capital Fund Management
Abstract:
We study, both analytically and numerically, an ARCH-like, multiscale model of volatility, which assumes that the volatility is governed by the observed past price changes on different time scales. With a power-law distribution of time horizons, we obtain a model that captures most stylized facts of financial time series: Student-like distribution of returns with a power-law tail, long-memory of the volatility, slow convergence of the distribution of returns towards the Gaussian distribution, multifractality and anomalous volatility relaxation after shocks. At variance with recent multifractal models that are strictly time reversal invariant, the model also reproduces the time assymmetry of financial time series: past large scale volatility influence future small scale volatility. In order to quantitatively reproduce all empirical observations, the parameters must be chosen such that our model is close to an instability, meaning that (a) the feedback effect is important and substantially increases the volatility, and (b) that the model is intrinsically difficult to calibrate because of the very long range nature of the correlations. By imposing the consistency of the model predictions with a large set of different empirical observations, a reasonable range of the parameters value can be determined. The model can easily be generalized to account for jumps, skewness and multiasset correlations.
JEL-codes: G10 (search for similar items in EconPapers)
Date: 2005-07
New Economics Papers: this item is included in nep-ecm, nep-ets, nep-fin and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sfi:sfiwpa:500059
Access Statistics for this paper
More papers in Science & Finance (CFM) working paper archive from Science & Finance, Capital Fund Management 6 boulevard Haussmann, 75009 Paris, FRANCE. Contact information at EDIRC.
Bibliographic data for series maintained by ().