EconPapers    
Economics at your fingertips  
 

On the meaning of mean shape: manifold stability, locus and the two sample test

Stephan Huckemann ()

Annals of the Institute of Statistical Mathematics, 2012, vol. 64, issue 6, 1227-1259

Abstract: Various concepts of mean shape previously unrelated in the literature are brought into relation. In particular, for non-manifolds, such as Kendall’s 3D shape space, this paper answers the question, for which means one may apply a two-sample test. The answer is positive if intrinsic or Ziezold means are used. The underlying general result of manifold stability of a mean on a shape space, the quotient due to an proper and isometric action of a Lie group on a Riemannian manifold, blends the slice theorem from differential geometry with the statistics of shape. For 3D Procrustes means, however, a counterexample is given. To further elucidate on subtleties of means, for spheres and Kendall’s shape spaces, a first-order relationship between intrinsic, residual/Procrustean and extrinsic/Ziezold means is derived stating that for high concentration the latter approximately divides the (generalized) geodesic segment between the former two by the ratio 1:3. This fact, consequences of coordinate choices for the power of tests and other details, e.g. that extrinsic Schoenberg means may increase dimension are discussed and illustrated by simulations and exemplary datasets. Copyright The Institute of Statistical Mathematics, Tokyo 2012

Keywords: Intrinsic mean; Extrinsic mean; Procrustes mean; Schoenberg mean; Ziezold mean; Shape spaces; Proper Lie group action; Slice theorem; Horizontal lift; Stratified spaces (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-012-0352-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:64:y:2012:i:6:p:1227-1259

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2

DOI: 10.1007/s10463-012-0352-2

Access Statistics for this article

Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi

More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:aistmt:v:64:y:2012:i:6:p:1227-1259