New estimating equation approaches with application in lifetime data analysis
Keming Yu (),
Bing Wang () and
Valentin Patilea ()
Annals of the Institute of Statistical Mathematics, 2013, vol. 65, issue 3, 589-615
Abstract:
Estimating equation approaches have been widely used in statistics inference. Important examples of estimating equations are the likelihood equations. Since its introduction by Sir R. A. Fisher almost a century ago, maximum likelihood estimation (MLE) is still the most popular estimation method used for fitting probability distribution to data, including fitting lifetime distributions with censored data. However, MLE may produce substantial bias and even fail to obtain valid confidence intervals when data size is not large enough or there is censoring data. In this paper, based on nonlinear combinations of order statistics, we propose new estimation equation approaches for a class of probability distributions, which are particularly effective for skewed distributions with small sample sizes and censored data. The proposed approaches may possess a number of attractive properties such as consistency, sufficiency and uniqueness. Asymptotic normality of these new estimators is derived. The construction of new estimation equations and their numerical performance under different censored schemes are detailed via Weibull distribution and generalized exponential distribution. Copyright The Institute of Statistical Mathematics, Tokyo 2013
Keywords: Estimation equation; Nonlinear combination of order statistics; Asymptotic normality; Weibull distribution; Generalized exponential distribution (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-012-0385-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:65:y:2013:i:3:p:589-615
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-012-0385-6
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().