Identification and estimation of superposed Neyman–Scott spatial cluster processes
Ushio Tanaka () and
Yosihiko Ogata ()
Annals of the Institute of Statistical Mathematics, 2014, vol. 66, issue 4, 687-702
Abstract:
This paper proposes an estimation method for superposed spatial point patterns of Neyman–Scott cluster processes of different distance scales and cluster sizes. Unlike the ordinary single Neyman–Scott model, the superposed process of Neyman–Scott models is not identified solely by the second-order moment property of the process. To solve the identification problem, we use the nearest neighbor distance property in addition to the second-order moment property. In the present procedure, we combine an inhomogeneous Poisson likelihood based on the Palm intensity with another likelihood function based on the nearest neighbor property. The derivative of the nearest neighbor distance function is regarded as the intensity function of the rotation invariant inhomogeneous Poisson point process. The present estimation procedure is applied to two sets of ecological location data. Copyright The Institute of Statistical Mathematics, Tokyo 2014
Keywords: Contact distances; Likelihood functions; Multi-type Neyman–Scott processes; Nearest neighbor distance function; Palm intensity (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-013-0431-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:66:y:2014:i:4:p:687-702
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-013-0431-z
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().