Estimation of a non-negative location parameter with unknown scale
Mohammad Jafari Jozani (),
Éric Marchand and
William Strawderman
Annals of the Institute of Statistical Mathematics, 2014, vol. 66, issue 4, 832 pages
Abstract:
For a vast array of general spherically symmetric location-scale models with a residual vector, we consider estimating the (univariate) location parameter when it is lower bounded. We provide conditions for estimators to dominate the benchmark minimax MRE estimator, and thus be minimax under scale invariant loss. These minimax estimators include the generalized Bayes estimator with respect to the truncation of the common non-informative prior onto the restricted parameter space for normal models under general convex symmetric loss, as well as non-normal models under scale invariant $$L^p$$ L p loss with $$p>0$$ p > 0 . We cover many other situations when the loss is asymmetric, and where other generalized Bayes estimators, obtained with different powers of the scale parameter in the prior measure, are proven to be minimax. We rely on various novel representations, sharp sign change analyses, as well as capitalize on Kubokawa’s integral expression for risk difference technique. Several properties such as robustness of the generalized Bayes estimators under various loss functions are obtained. Copyright The Institute of Statistical Mathematics, Tokyo 2014
Keywords: Dominance; Generalized Bayes; Lower bounded mean; $$L^p$$ L p loss; Minimax; Robustness (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-013-0425-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:66:y:2014:i:4:p:811-832
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-013-0425-x
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().