EconPapers    
Economics at your fingertips  
 

An empirical estimator for the sparsity of a large covariance matrix under multivariate normal assumptions

Binyan Jiang ()

Annals of the Institute of Statistical Mathematics, 2015, vol. 67, issue 2, 227 pages

Abstract: Large covariance or correlation matrix is frequently assumed to be sparse in that a number of the off-diagonal elements of the matrix are zero. This paper focuses on estimating the sparsity of a large population covariance matrix using a sample correlation matrix under multivariate normal assumptions. We show that sparsity of a population covariance matrix can be well estimated by thresholding the sample correlation matrix. We then propose an empirical estimator for the sparsity and show that it is closely related to the thresholding methods. Upper bounds for the estimation error of the empirical estimator are given under mild conditions. Simulation shows that the empirical estimator can have smaller mean absolute errors than its main competitors. Furthermore, when the dimension of the covariance matrix is very large, we propose a generalized empirical estimator using simple random sampling. It is shown that the generalized empirical estimator can still estimate the sparsity well while the computation complexity can be greatly reduced. Copyright The Institute of Statistical Mathematics, Tokyo 2015

Keywords: Adaptive thresholding; Large correlation matrix; Large covariance matrix; Simple random sampling; Sparsity; Thresholding (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-014-0447-z (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:67:y:2015:i:2:p:211-227

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2

DOI: 10.1007/s10463-014-0447-z

Access Statistics for this article

Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi

More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:aistmt:v:67:y:2015:i:2:p:211-227