A normal hierarchical model and minimum contrast estimation for random intervals
Yan Sun () and
Dan Ralescu ()
Annals of the Institute of Statistical Mathematics, 2015, vol. 67, issue 2, 313-333
Abstract:
Many statistical data are imprecise due to factors such as measurement errors, computation errors, and lack of information. In such cases, data are better represented by intervals rather than by single numbers. Existing methods for analyzing interval-valued data include regressions in the metric space of intervals and symbolic data analysis, the latter being proposed in a more general setting. However, there has been a lack of literature on the parametric modeling and distribution-based inferences for interval-valued data. In an attempt to fill this gap, we extend the concept of normality for random sets by Lyashenko and propose a Normal hierarchical model for random intervals. In addition, we develop a minimum contrast estimator (MCE) for the model parameters, which is both consistent and asymptotically normal. Simulation studies support our theoretical findings and show very promising results. Finally, we successfully apply our model and MCE to a real data set. Copyright The Institute of Statistical Mathematics, Tokyo 2015
Keywords: Random intervals; Uncertainty; Normality; Choquet functional; Minimum contrast estimator; Strong consistency; Asymptotic normality (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10463-014-0453-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:67:y:2015:i:2:p:313-333
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2
DOI: 10.1007/s10463-014-0453-1
Access Statistics for this article
Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi
More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().