EconPapers    
Economics at your fingertips  
 

Inference for a change-point problem under a generalised Ornstein–Uhlenbeck setting

Fuqi Chen (), Rogemar Mamon () and Sévérien Nkurunziza ()
Additional contact information
Fuqi Chen: University of Western Ontario
Rogemar Mamon: University of Western Ontario
Sévérien Nkurunziza: University of Windsor

Annals of the Institute of Statistical Mathematics, 2018, vol. 70, issue 4, No 5, 807-853

Abstract: Abstract Determining accurately when regime and structural changes occur in various time-series data is critical in many social and natural sciences. We develop and show further the equivalence of two consistent estimation techniques in locating the change point under the framework of a generalised version of the one-dimensional Ornstein–Uhlenbeck process. Our methods are based on the least sum of squared error and the maximum log-likelihood approaches. The case where both the existence and the location of the change point are unknown is investigated and an informational methodology is employed to address these issues. Numerical illustrations are presented to assess the methods’ performance.

Keywords: Sequential analysis; Least sum of squared errors; Maximum likelihood; Consistent estimator; Existence of change point (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s10463-017-0610-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:aistmt:v:70:y:2018:i:4:d:10.1007_s10463-017-0610-4

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10463/PS2

DOI: 10.1007/s10463-017-0610-4

Access Statistics for this article

Annals of the Institute of Statistical Mathematics is currently edited by Tomoyuki Higuchi

More articles in Annals of the Institute of Statistical Mathematics from Springer, The Institute of Statistical Mathematics
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:aistmt:v:70:y:2018:i:4:d:10.1007_s10463-017-0610-4