Uncertainty quantification for the family-wise error rate in multivariate copula models
Jens Stange (),
Taras Bodnar () and
Thorsten Dickhaus
AStA Advances in Statistical Analysis, 2015, vol. 99, issue 3, 310 pages
Abstract:
We derive confidence regions for the realized family-wise error rate (FWER) of certain multiple tests which are empirically calibrated at a given (global) level of significance. To this end, we regard the FWER as a derived parameter of a multivariate parametric copula model. It turns out that the resulting confidence regions are typically very much concentrated around the target FWER level, while generic multiple tests with fixed thresholds are in general not FWER-exhausting. Since FWER level exhaustion and optimization of power are equivalent for the classes of multiple test problems studied in this paper, the aforementioned findings militate strongly in favor of estimating the dependency structure (i.e., copula) and incorporating it in a multivariate multiple test procedure. We illustrate our theoretical results by considering two particular classes of multiple test problems of practical relevance in detail, namely multiple tests for components of a mean vector and multiple support tests. Copyright Springer-Verlag Berlin Heidelberg 2015
Keywords: Delta method; Gumbel–Hougaard copula; Multiple testing; Simultaneous test procedure; Subset pivotality (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10182-014-0241-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:alstar:v:99:y:2015:i:3:p:281-310
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10182/PS2
DOI: 10.1007/s10182-014-0241-5
Access Statistics for this article
AStA Advances in Statistical Analysis is currently edited by Göran Kauermann and Yarema Okhrin
More articles in AStA Advances in Statistical Analysis from Springer, German Statistical Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().