The empirical behavior of sampling methods for stochastic programming
Jeff Linderoth (),
Alexander Shapiro () and
Stephen Wright ()
Annals of Operations Research, 2006, vol. 142, issue 1, 215-241
Abstract:
We investigate the quality of solutions obtained from sample-average approximations to two-stage stochastic linear programs with recourse. We use a recently developed software tool executing on a computational grid to solve many large instances of these problems, allowing us to obtain high-quality solutions and to verify optimality and near-optimality of the computed solutions in various ways. Copyright Springer Science + Business Media, Inc. 2006
Keywords: Stochastic linear programming; Recourse; Sample average approximations; Computational grid; Monte Carlo sampling; Optimality gap; Statistical KKT test (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (88)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-006-6169-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:142:y:2006:i:1:p:215-241:10.1007/s10479-006-6169-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-006-6169-8
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().