Forecasting tourism demand using fractional grey prediction models with Fourier series
Yi-Chung Hu ()
Additional contact information
Yi-Chung Hu: Chung Yuan Christian University
Annals of Operations Research, 2021, vol. 300, issue 2, No 8, 467-491
Abstract:
Abstract Tourism demand forecasting has played an important role in supporting governments to devise development policies for travel and tourism. However, time series related to tourism often do not conform to statistical assumptions and feature significant temporal fluctuations. Because a Fourier series is often applied to oscillating sequences to remove noise, it is reasonable to develop a grey prediction model in conjunction with a Fourier series to forecast tourism demand. However, grey prediction models traditionally use one-order accumulation, treating each sample with equal weight, to identify regularities concealed in data sequences. Furthermore, when generating residuals from Fourier series, the prediction accuracy of the newly generated predicted values is not taken into account. In this study, by using fractional order accumulation to assign appropriate weights to samples, we propose a fractional grey prediction model with Fourier series that offers high prediction accuracy. Experimental results demonstrate that the proposed grey prediction model performs well compared with other considered prediction models.
Keywords: Foreign tourist; Grey prediction; Fourier series; Soft computing; Neural network (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-020-03670-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:300:y:2021:i:2:d:10.1007_s10479-020-03670-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-020-03670-0
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().