Bank efficiency and failure prediction: a nonparametric and dynamic model based on data envelopment analysis
Zhiyong Li (),
Chen Feng () and
Ying Tang ()
Additional contact information
Zhiyong Li: Southwestern University of Finance and Economics
Chen Feng: Southwestern University of Finance and Economics
Ying Tang: Southwestern University of Finance and Economics
Annals of Operations Research, 2022, vol. 315, issue 1, No 12, 279-315
Abstract:
Abstract For decades, the prediction of bank failure has been a popular topic in credit risk and banking studies. Statistical and machine learning methods have been working well in predicting the probability of bankruptcy for different time horizons prior to the failure. In recent years, bank efficiency has attracted much interest from academic circles, where low productivity or efficiency in banks has been regarded as a potential reason for failure. It is generally believed that low efficiency implies low-quality management of the organisation, which may lead to bad performance in the competitive financial markets. Previous papers linking efficiency measures calculated by Data Envelopment Analysis (DEA) to bank failure prediction have been limited to cross sectional analyses. A dynamic analysis with the updated samples is therefore recommended for bankruptcy prediction. This paper proposes a nonparametric method, Malmquist DEA with Worst Practice Frontier, to dynamically assess the bankruptcy risk of banks over multiple periods. A total sample of 4426 US banks over a period of 15 years (2002–2016), covering the subprime financial crisis, is used to empirically test the model. A static model is used as the benchmark, and we introduce more extensions for comparisons of predictive performance. Results of the comparisons and robustness tests show that Malmquist DEA is a useful tool not only for estimating productivity growth but also to give early warnings of the potential collapse of banks. The extended DEA models with various reference sets and orientations also show strong predictive power.
Keywords: Bank failure; Bank efficiency; Data Envelopment Analysis; Bankruptcy prediction; Dynamic model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-04597-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:315:y:2022:i:1:d:10.1007_s10479-022-04597-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-022-04597-4
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().