EconPapers    
Economics at your fingertips  
 

Data-driven decision model based on local two-stage weighted ensemble learning

Che Xu, Wenjun Chang () and Weiyong Liu ()
Additional contact information
Che Xu: Hefei University of Technology
Wenjun Chang: Hefei University of Technology
Weiyong Liu: University of Science and Technology of China

Annals of Operations Research, 2023, vol. 325, issue 2, No 11, 995-1028

Abstract: Abstract To improve the decision performance using historical decision data, this paper proposes a data-driven decision model based on local two-stage weighted ensemble learning. The assessments of historical alternatives are collected from a multicriteria framework. For each new alternative, a set of its similar alternatives is determined from historical alternatives using the K-Nearest Neighbor technique, and then a set of base classifiers (BCs) is generated by the historical assessments. Based on ensemble error and diversity of BCs in predicting the similar historical alternatives of the new alternative, a local two-stage weighted ensemble method is developed to learn the optimal BC weights for the new alternative. Such a learning process not only considers the changes of BCs’ competence in facing different alternatives (instances) but also avoids falling into the dilemma of balancing the accuracy and diversity of BCs. By combining the continuous outputs of different BCs with the learned BC weights, the weighted ensemble outputs are obtained for the similar historical alternatives of the new alternative. Based on these outputs and the assessments of those similar historical alternatives on criteria, a linear optimization model is constructed to learn criterion weights. Using the learned criterion weights, the interpretable decision is performed. The advantages of the proposed decision model against four traditional decision models are validated by a real case study for the diagnosis of thyroid nodules. Thirty real datasets examine the competence of the proposed weighted ensemble method against mainstream ensemble methods and combination rules.

Keywords: Data-driven decision model; Ensemble learning; Multicriteria classification; Weighted averaging combination; Diagnosis of thyroid nodules (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-04599-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:325:y:2023:i:2:d:10.1007_s10479-022-04599-2

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-022-04599-2

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:325:y:2023:i:2:d:10.1007_s10479-022-04599-2