Locating a disinfection facility for hazardous healthcare waste in the COVID-19 era: a novel approach based on Fermatean fuzzy ITARA-MARCOS and random forest recursive feature elimination algorithm
Vladimir Simic (),
Ali Ebadi Torkayesh () and
Abtin Ijadi Maghsoodi ()
Additional contact information
Vladimir Simic: University of Belgrade
Ali Ebadi Torkayesh: RWTH Aachen University
Abtin Ijadi Maghsoodi: University of Auckland
Annals of Operations Research, 2023, vol. 328, issue 1, No 32, 1105-1150
Abstract:
Abstract Hazardous healthcare waste (HCW) management system is one of the most critical urban systems affected by the COVID-19 pandemic due to the increase in waste generation rate in hospitals and medical centers dealing with infected patients as well as the degree of hazardousness of generated waste due to exposure to the virus. In this regard, waste network flow would face severe problems without taking care of hazardous waste through disinfection facilities. For this purpose, this study aims to develop an advanced decision support system based on a multi-stage model that was combined with the random forest recursive feature elimination (RF-RFE) algorithm, the indifference threshold-based attribute ratio analysis (ITARA), and measurement of alternatives and ranking according to compromise solution (MARCOS) methods into a unique framework under the Fermatean fuzzy environment. In the first stage, the innovative Fermatean fuzzy RF-RFE algorithm extracts core criteria from a finite set of initial criteria. In the second stage, the novel Fermatean fuzzy ITARA determines the semi-objective importance of the core criteria. In the third stage, the new Fermatean fuzzy MARCOS method ranks alternatives. A real-life case study in Istanbul, Turkey, illustrates the applicability of the introduced methodology. Our empirical findings indicate that “Pendik” is the best among five candidate locations for sitting a new disinfection facility for hazardous HCW in Istanbul. The sensitivity and comparative analyses confirmed that our approach is highly robust and reliable. This approach could be used to tackle other critical multi-dimensional problems related to COVID-19 and support sustainability and circular economy.
Keywords: COVID-19; Healthcare waste; Fermatean fuzzy set; Random forest; Recursive feature elimination; MARCOS (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-04822-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:328:y:2023:i:1:d:10.1007_s10479-022-04822-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-022-04822-0
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().