Reliability Estimation in Load-Sharing System Model with Application to Real Data
Pramendra Singh Pundir and
Puneet Kumar Gupta ()
Additional contact information
Pramendra Singh Pundir: University of Allahabad
Puneet Kumar Gupta: University of Allahabad
Annals of Data Science, 2018, vol. 5, issue 1, No 7, 69-91
Abstract:
Abstract This study deals with the reliability analysis of a multi-component load sharing system where failure of any component within the system induces higher failure rate on the remaining surviving components. It is assumed that each component failure time follows Chen distribution. In classical set up, the maximum likelihood estimates of the load sharing parameters, system reliability and hazard rate along with their standard errors are computed. Since maximum likelihood estimates are not in closed form, so asymptotic confidence intervals and two bootstrap confidence intervals for the unknown parameters have also been constructed. Further, by assuming both informative and non-informative prior for the unknown parameters, Bayes estimates along with their posterior standard errors and HPD intervals of the parameters are obtained. Thereafter, a simulation study elicitates the theoretical developments. A real data analysis, at the end, eshtablishes the applicability of the proposed theory.
Keywords: Load-sharing system model; Chen distribution; Simulation; Metropolis-Hasting algorithm; Gibbs sampler (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s40745-017-0120-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:aodasc:v:5:y:2018:i:1:d:10.1007_s40745-017-0120-5
Ordering information: This journal article can be ordered from
https://www.springer ... gement/journal/40745
DOI: 10.1007/s40745-017-0120-5
Access Statistics for this article
Annals of Data Science is currently edited by Yong Shi
More articles in Annals of Data Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().