Estimation of the potential GDP by a new robust filter method
Éva Gyurkovics () and
Tibor Takacs
Additional contact information
Éva Gyurkovics: Budapest University of Technology and Economics
Central European Journal of Operations Research, 2023, vol. 31, issue 4, No 8, 1183-1207
Abstract:
Abstract The first purpose of this paper is to propose a theoretically new robust filter method to estimate non-observable macroeconomic indicators. The second purpose is to apply the proposed method to estimate the Hungarian potential GDP in 2000–2021. The novelty of the proposed filter method is that — unlike papers published so far — it does not require the stability of the dynamic model, only a partial stability condition must be satisfied. Moreover, such time-dependent uncertainties and nonlinearities can arise in the model that satisfy a general quadratic constraint. An important advantage of the proposed robust filter method over the traditional Kalman filter is that no stochastic assumptions is needed that may not be valid for the problem at hand. The proposed filter method has never been applied to estimate the potential GDP. To estimate the Hungarian potential GDP, the proposed method is applied using uni-, bi- and trivariate models. Estimations up to 2021 has not been published yet for the Hungarian economy. The examined period includes both the financial world crisis and the Covid-19 crisis. The results of the different models are consistent. It turned out that the economic policy was very procyclical after 2012, and the GDP gap was still positive during and also after the Covid-19 crisis.
Keywords: Potential GDP; Robust filtering; Polytopic and quadratically bounded uncertainties; Linear matrix inequality; Unobserved components model; Trend-cycle decomposition (search for similar items in EconPapers)
JEL-codes: C13 C22 C32 C52 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10100-023-00851-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:cejnor:v:31:y:2023:i:4:d:10.1007_s10100-023-00851-7
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10100
DOI: 10.1007/s10100-023-00851-7
Access Statistics for this article
Central European Journal of Operations Research is currently edited by Ulrike Leopold-Wildburger
More articles in Central European Journal of Operations Research from Springer, Slovak Society for Operations Research, Hungarian Operational Research Society, Czech Society for Operations Research, Österr. Gesellschaft für Operations Research (ÖGOR), Slovenian Society Informatika - Section for Operational Research, Croatian Operational Research Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().